Hereditary, Additive and Divisible Classes in Epireflective Subcategories of Top

نویسنده

  • Martin Sleziak
چکیده

Martin Sleziak HAD-classes in epireflective subcategories of Top Introduction Heredity of AD-classes References Basic definitions Hereditary coreflective subcategories of Top A generalization – epireflective subcategories AD-classes and HAD-classes Subcategories of Top All subcategories are assumed to be full and isomorphism-closed. subcategory of Top = class of topological spaces closer under homeomorphisms subcategory of Top class of spaces closed under coreflective quotients and topological sums epireflective subspaces and products hereditary subspaces Martin Sleziak HAD-classes in epireflective subcategories of Top Introduction Heredity of AD-classes References Basic definitions Hereditary coreflective subcategories of Top A generalization – epireflective subcategories AD-classes and HAD-classes

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Katedra algebry, geometrie a didaktiky matematiky HEREDITY, HEREDITARY COREFLECTIVE HULLS AND OTHER PROPERTIES OF COREFLECTIVE SUBCATEGORIES OF CATEGORIES OF TOPOLOGICAL SPACES

This thesis deals mainly with hereditary coreflective subcategories of the category Top of topological spaces. After preparing the basic tools used in the rest of thesis we start by a question which coreflective subcategories of Top have the property SA = Top (i.e., every topological space can be embedded in a space from A). We characterize such classes by finding generators of the smallest cor...

متن کامل

Subcategories of topological algebras

In addition to exploring constructions and properties of limits and colimits in categories of topological algebras, we study special subcategories of topological algebras and their properties. In particular, under certain conditions, reflective subcategories when paired with topological structures give rise to reflective subcategories and epireflective subcategories give rise to epireflective s...

متن کامل

Semi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices

At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...

متن کامل

On closure operators, reflections and protolocalisations in Goursat categories

By defining a closure operator on effective equivalence relations in a regular category C, it is possible to establish a bijective correspondence between these closure operators and the regular epireflective subcategories of C, on the model of the closure operators on kernels in homological categories [5]. When C is an exact Goursat category [6], this correspondence restricts to a bijection bet...

متن کامل

non-divisibility for abelian groups

Throughout all groups are abelian. We say a group G is n-divisible if nG = G. If G has no non-zero n-divisible subgroups for all n>1 then we say that G is absolutely non-divisible. In the study of class C consisting   all absolutely non-divisible groups such as G, we come across the sub groups T_p(G) = the sum of all p-divisible subgroups and rad_p(G) = the intersection of all p^nG. The proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2008